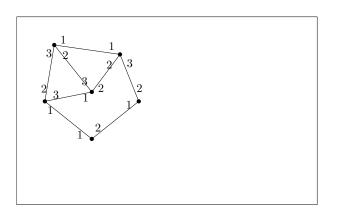
Graph Exploration Algorithms

Dariusz Dereniowski

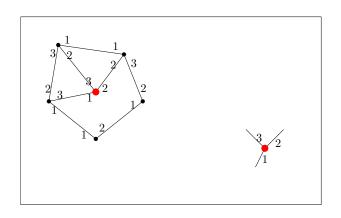
Faculty of Electronics, Telecommunications and Informatics Gdańsk University of Technology

8th workshop on GRAph Searching, Theory & Applications, Anogia, Crete, Greece, April 12, 2017

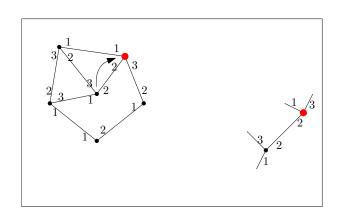
we consider only unknown graphs

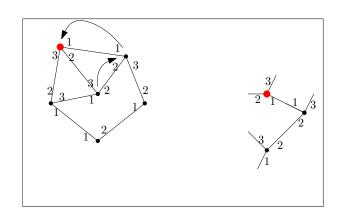

- we consider only unknown graphs
- exploration of unlabeled networks (just to note)

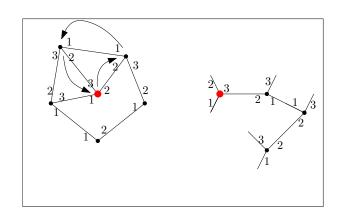
- we consider only unknown graphs
- exploration of unlabeled networks (just to note)
- exploration of labeled graphs


- we consider only unknown graphs
- exploration of unlabeled networks (just to note)
- exploration of labeled graphs
 - piecemeal exploration of labeled graphs (more generally, energy constrained)

- we consider only unknown graphs
- exploration of unlabeled networks (just to note)
- exploration of labeled graphs
 - piecemeal exploration of labeled graphs (more generally, energy constrained)
 - exploration time of labeled graphs


- vertices have no identifiers,
- edges have port numbers


- vertices have no identifiers,
- edges have port numbers


- vertices have no identifiers,
- edges have port numbers

- vertices have no identifiers,
- edges have port numbers

- vertices have no identifiers,
- edges have port numbers

feasibility of the task (symmetry breaking)

- feasibility of the task (symmetry breaking)
- agents with little memory (e.g., exploration by finite automaton)

- feasibility of the task (symmetry breaking)
- agents with little memory (e.g., exploration by finite automaton)
- communication

- feasibility of the task (symmetry breaking)
- agents with little memory (e.g., exploration by finite automaton)
- communication
- impact of knowledge

- feasibility of the task (symmetry breaking)
- agents with little memory (e.g., exploration by finite automaton)
- communication
- impact of knowledge
 - Note: size of advice for an arbitrary n-node graph is $\Theta(n \log n)$ for connected monotone edge search [Nisse & Soguet'07] (log n bits of advice are provided to vertices having whiteboards)

Unknown labeled graphs

- vertices have unique identifiers
- agent is able to distinguish incident edges

Exploring unknown labeled graphs

Theorem (Panaite & Pelc'99)

There exists an exploration algorithm with penalty¹ 3n for any n-node graph.

¹the reference value is the number of edges

Exploring unknown labeled graphs

Theorem (Panaite & Pelc'99)

There exists an exploration algorithm with penalty¹ 3n for any n-node graph. Note:

■ DFS does not work (penalty $\Omega(m)$)

¹the reference value is the number of edges

Exploring unknown labeled graphs

Theorem (Panaite & Pelc'99)

There exists an exploration algorithm with penalty¹ 3n for any n-node graph. Note:

- DFS does not work (penalty $\Omega(m)$)
- lacktriangle greedy approach does not work (penalty $\omega(n)$)

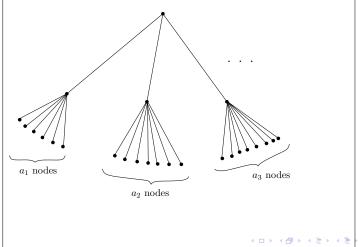
¹the reference value is the number of edges

■ single agent

- single agent
- the graph is labeled (nodes are distinguishable) and unknown to the agent

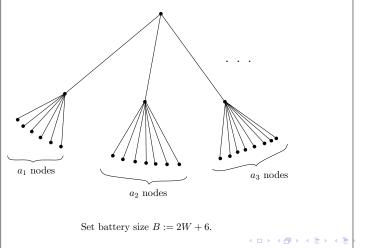
- single agent
- the graph is labeled (nodes are distinguishable) and unknown to the agent
- agent initially located at a homebase

- single agent
- the graph is labeled (nodes are distinguishable) and unknown to the agent
- agent initially located at a homebase
- agent has a battery of limited size B: it needs to return to the homebase to recharge after at most B edge traversals)


- single agent
- the graph is labeled (nodes are distinguishable) and unknown to the agent
- agent initially located at a homebase
- agent has a battery of limited size B: it needs to return to the homebase to recharge after at most B edge traversals)
- minimize the number of trips (i.e., recharging events)
 - (closely related model to tethered agents)

Piecemeal exploration — offline version (complexity)

Simple reduction from 3-partition (Instance: $S = \{a_1, \dots, a_{3m}\}$. Q.: is there a partition of S into m sets of the same sum W?)


Piecemeal exploration — offline version (complexity)

Simple reduction from 3-partition (Instance: $S = \{a_1, \dots, a_{3m}\}$). Q.: is there a partition of S into m sets of the same sum W?)

Piecemeal exploration — offline version (complexity)

Simple reduction from 3-partition (Instance: $S = \{a_1, \dots, a_{3m}\}$). Q.: is there a partition of S into m sets of the same sum W?)

Piecemeal exploration (short survey)

Theorem (Awerbuch et al.'99)

There exists a $O(m + n^{1+o(1)})$ -time piecemeal exploration algorithm with battery size $(2 + \alpha)r$ in any undirected graph, where r is the radius of the graph and $\alpha > 0$ is some constant.

Piecemeal exploration (short survey)

Theorem (Awerbuch et al.'99)

There exists a $O(m + n^{1+o(1)})$ -time piecemeal exploration algorithm with battery size $(2 + \alpha)r$ in any undirected graph, where r is the radius of the graph and $\alpha > 0$ is some constant.

Theorem (Awerbuch & Kobourov'98)

There exists a $O(m + n \log^2 n)$ -time piecemeal exploration algorithm with battery size $(2 + \alpha)r$ in any undirected graph, where r is the radius of the graph and $\alpha > 2$ is some constant.

Piecemeal exploration (short survey)

Theorem (Awerbuch et al.'99)

There exists a $O(m + n^{1+o(1)})$ -time piecemeal exploration algorithm with battery size $(2 + \alpha)r$ in any undirected graph, where r is the radius of the graph and $\alpha > 0$ is some constant.

Theorem (Awerbuch & Kobourov'98)

There exists a $O(m + n \log^2 n)$ -time piecemeal exploration algorithm with battery size $(2 + \alpha)r$ in any undirected graph, where r is the radius of the graph and $\alpha > 2$ is some constant.

Theorem (Duncan, Kobourov & Kumar'06)

There exists a $O(m/\alpha)$ -time piecemeal exploration algorithm with battery size $2(1+\alpha)r$ in any undirected graph, where r is the radius of the graph and $\alpha>0$ is some constant.

■ as before: unknown labeled graphs

- as before: unknown labeled graphs
- multiple agents, each being able to perform at most *B* edge traversals

- as before: unknown labeled graphs
- multiple agents, each being able to perform at most B edge traversals
- equivalent to piecemeal exploration when we insist that each agents needs to return to the homebase; different without this assumption

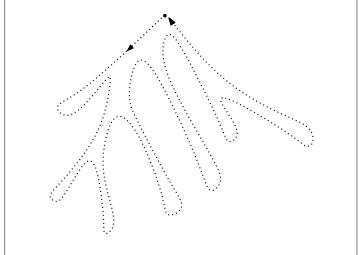
- as before: unknown labeled graphs
- multiple agents, each being able to perform at most B edge traversals
- equivalent to piecemeal exploration when we insist that each agents needs to return to the homebase; different without this assumption
- we aim at a stronger algorithm that uses local communication

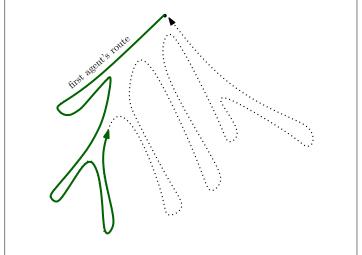
- as before: unknown labeled graphs
- multiple agents, each being able to perform at most B edge traversals
- equivalent to piecemeal exploration when we insist that each agents needs to return to the homebase; different without this assumption
- we aim at a stronger algorithm that uses local communication
- approach that sometimes works: start with global communication and then patch your solution

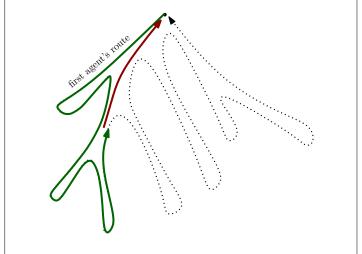
Energy constrained exploration — optimization criteria

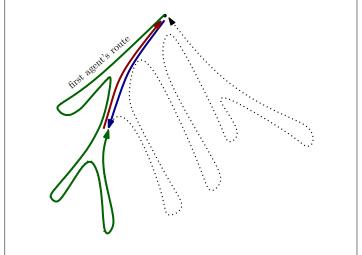
What we optimize? Two examples are:

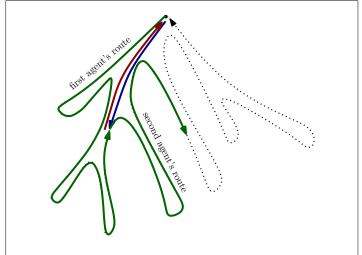
Energy constrained exploration — optimization criteria

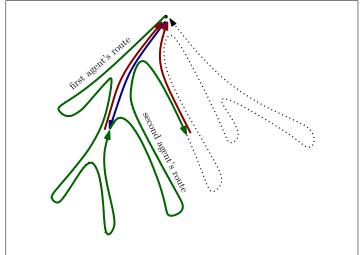

What we optimize? Two examples are:

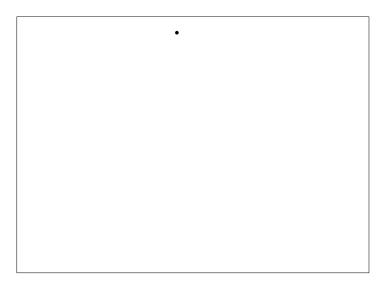

■ Example 1: keep the number of agents optimal but increase the battery size (the battery size becomes $(1 + \alpha)B$; try to keep $\alpha > 0$ as small as possible) [our first example below; with assumption that each agent returns to the homebase]

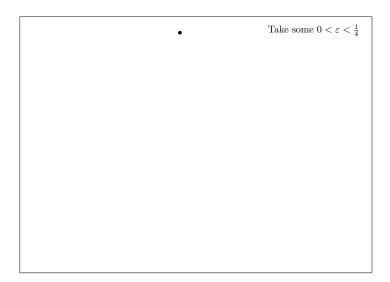

Energy constrained exploration — optimization criteria


What we optimize? Two examples are:

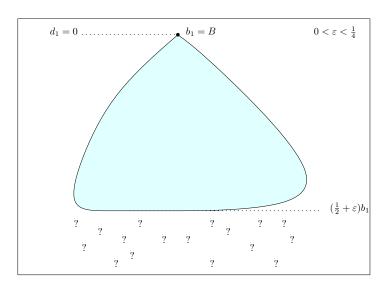

- Example 1: keep the number of agents optimal but increase the battery size (the battery size becomes $(1 + \alpha)B$; try to keep $\alpha > 0$ as small as possible) [our first example below; with assumption that each agent returns to the homebase]
- Example 2: keep the battery size B but increase the number of agents [our second example below; without returning to the homebase]

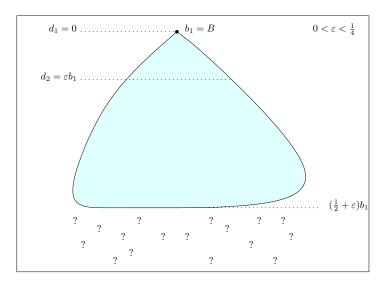


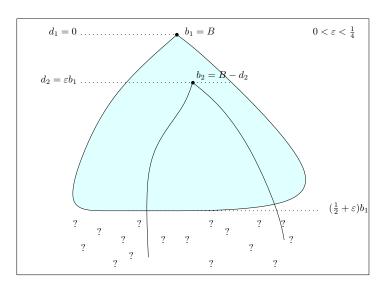


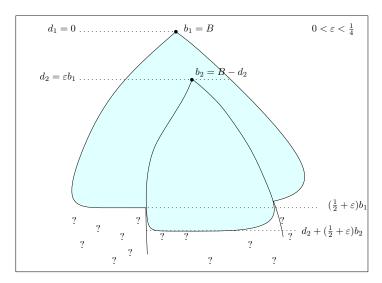


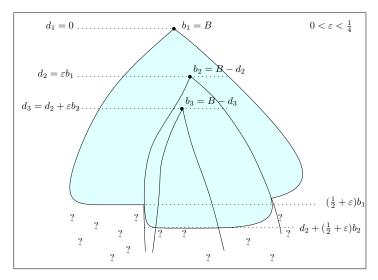
(Piecemeal exploration, approximate by increasing the battery size)

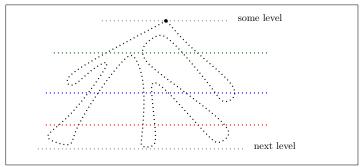

Theorem (Dynia, Korzeniowski & Schindelhauer'06)


There exists a 8-competitive algorithm that explores any unknown input tree by energy constrained agents using local communication.

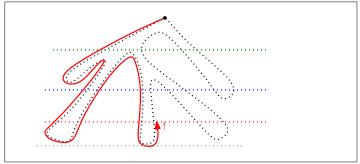



```
d_1 = 0 \dots b_1 = B
                                            Take some 0 < \varepsilon < \frac{1}{4}
```

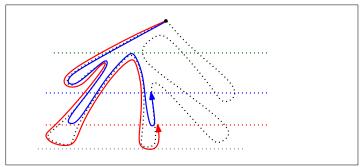




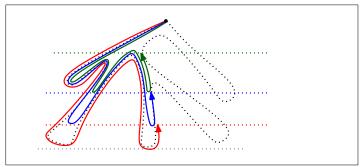
Note: local communication means that an agent only knows its own history and what it learned when meeting other agents.


Note: local communication means that an agent only knows its own history and what it learned when meeting other agents.

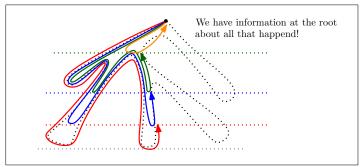
Previous solution can be adopted for local communication:


Note: local communication means that an agent only knows its own history and what it learned when meeting other agents.

Previous solution can be adopted for local communication:


Note: local communication means that an agent only knows its own history and what it learned when meeting other agents.

Previous solution can be adopted for local communication:


Note: local communication means that an agent only knows its own history and what it learned when meeting other agents.

Previous solution can be adopted for local communication:

Note: local communication means that an agent only knows its own history and what it learned when meeting other agents.

Previous solution can be adopted for local communication:

Previous solution can be adopted for local communication:

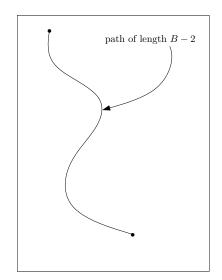
second modification (communication between levels):

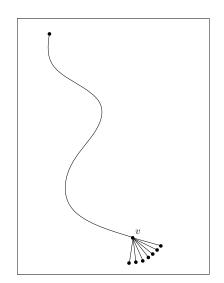
- second modification (communication between levels):
 - at each node v of a given level there is a special agent

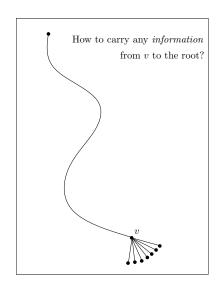
- second modification (communication between levels):
 - at each node v of a given level there is a special agent
 - the special agent is responsible for (1) reporting to its ancestor from previous level that exploration of the subtree rooted at v is completed, and

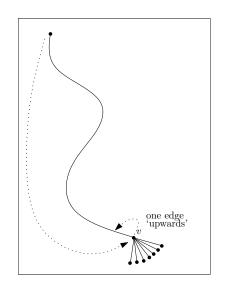
- second modification (communication between levels):
 - at each node v of a given level there is a special agent
 - the special agent is responsible for (1) reporting to its ancestor from previous level that exploration of the subtree rooted at v is completed, and
 - (2) redirecting agents coming from the root to the currently explored subtree

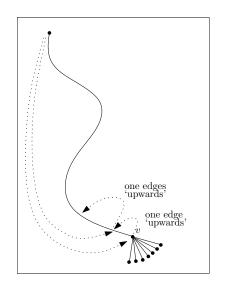
- second modification (communication between levels):
 - at each node v of a given level there is a special agent
 - the special agent is responsible for (1) reporting to its ancestor from previous level that exploration of the subtree rooted at v is completed, and
 - (2) redirecting agents coming from the root to the currently explored subtree
 - agents use time to communicate as follows

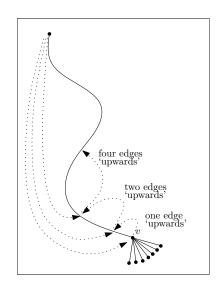

- second modification (communication between levels):
 - at each node v of a given level there is a special agent
 - the special agent is responsible for (1) reporting to its ancestor from previous level that exploration of the subtree rooted at v is completed, and
 - (2) redirecting agents coming from the root to the currently explored subtree
 - agents use time to communicate as follows
 - every few time steps $(\Theta(B)$ steps) a new agent 'appears' at the root which is then redirected through consecutive levels down the tree by the special agents.

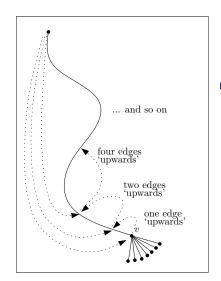

Previous solution can be adopted for local communication:

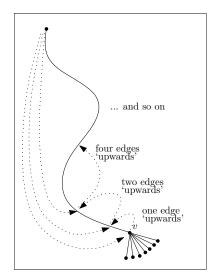

- second modification (communication between levels):
 - at each node v of a given level there is a special agent
 - the special agent is responsible for (1) reporting to its ancestor from previous level that exploration of the subtree rooted at v is completed, and
 - (2) redirecting agents coming from the root to the currently explored subtree
 - agents use time to communicate as follows
 - every few time steps $(\Theta(B)$ steps) a new agent 'appears' at the root which is then redirected through consecutive levels down the tree by the special agents.

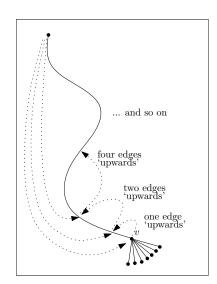

Theorem (Das, D. & Karousatou'14)


There exists a $O(\log B)$ -competitive algorithm that explores any unknown input tree by energy constrained agents using local communication.









we need log B agents to carry information from v to the root

- we need log B agents to carry information from v to the root
- this information is the number of leaves

- we need log B agents to carry information from v to the root
- this information is the number of leaves
- Claim: $\Omega(\log B)$ agents are necessary for some graphs.

Exploration time

- a team of k robots start at the root of a tree
- the goal is to explore the tree

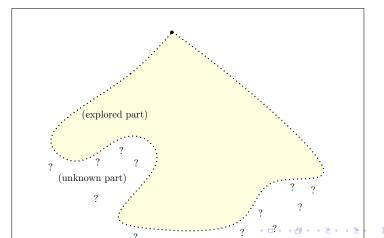
Unknown tree exploration — a short survey

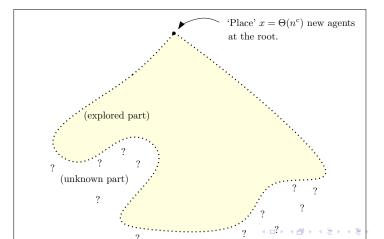
- time $O(D + n/\log k)$ using whiteboards at nodes [Fraigniaud et al.'06]
 - this gives competitive ratio of $O(k/\log k)$ w.r. offline optimal O(D + n/k)
 - intermediate algorithmic step via global communication

Unknown tree exploration — a short survey

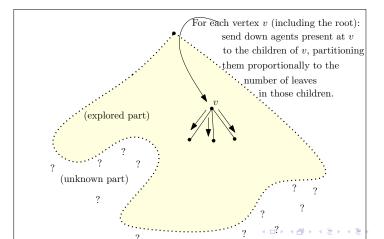
- time $O(D + n/\log k)$ using whiteboards at nodes [Fraigniaud et al.'06]
 - this gives competitive ratio of $O(k/\log k)$ w.r. offline optimal O(D + n/k)
 - intermediate algorithmic step via global communication
- time $O(n/k + D^{k-1})$ using whiteboards at nodes [Brass & Cabrera-Mora'11]
 - improvement only for small diameter and $k = O(\log_D n)$

Unknown tree exploration — a short survey

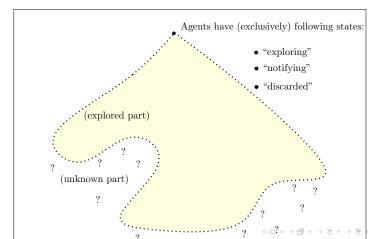

- time $O(D + n/\log k)$ using whiteboards at nodes [Fraigniaud et al.'06]
 - this gives competitive ratio of $O(k/\log k)$ w.r. offline optimal O(D + n/k)
 - intermediate algorithmic step via global communication
- time $O(n/k + D^{k-1})$ using whiteboards at nodes [Brass & Cabrera-Mora'11]
 - improvement only for small diameter and $k = O(\log_D n)$
- exploration in time O(D) with a polynomial number of agents [D. et al.'13]
 - time $D(1 + \frac{1}{c-1} + o(1))$ using Dn^c for any c > 1; global communication (Example 3)
 - time $D(1 + \frac{2}{c-1} + o(1))$ using Dn^c for any c > 1; local communication (Example 4)
 - time $O(D \log n)$ using $k = (2 + \varepsilon)nD$ agents and local communication in general graph, for any $\varepsilon > 0$

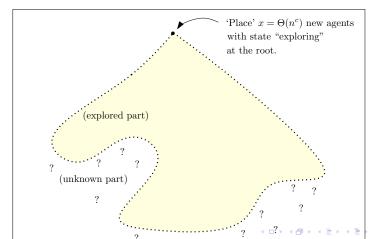

■ The goal: exploration in time O(D) with polynomial number of agents

- The goal: exploration in time O(D) with polynomial number of agents
- Single *step* is as follows:

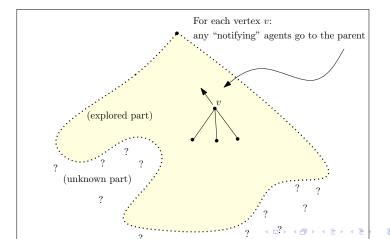

- The goal: exploration in time O(D) with polynomial number of agents
- Single *step* is as follows:

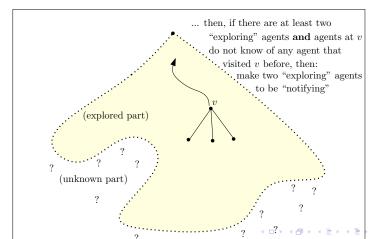
- The goal: exploration in time O(D) with polynomial number of agents
- Single *step* is as follows:

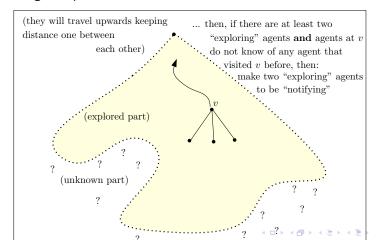

- The goal: exploration in time O(D) with polynomial number of agents
- Single *step* is as follows:

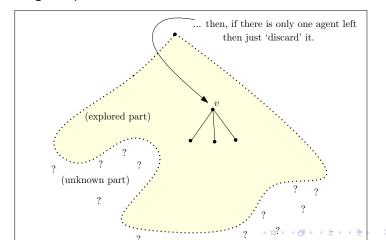

■ The goal: exploration also in time O(D) with polynomial number of agents

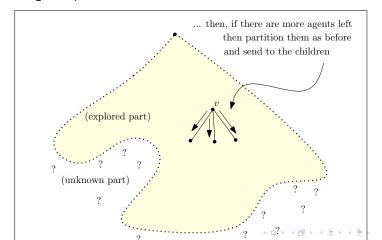
- The goal: exploration also in time O(D) with polynomial number of agents
- Single *step* is as follows:

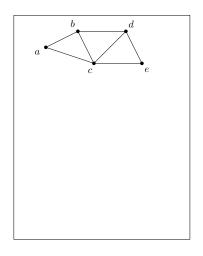

- The goal: exploration also in time O(D) with polynomial number of agents
- Single *step* is as follows:


- The goal: exploration also in time O(D) with polynomial number of agents
- Single *step* is as follows:

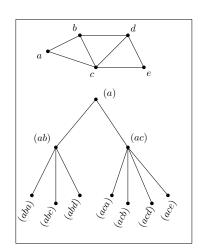

- The goal: exploration also in time O(D) with polynomial number of agents
- Single *step* is as follows:


- The goal: exploration also in time O(D) with polynomial number of agents
- Single *step* is as follows:

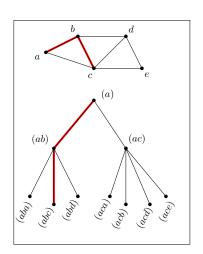

- The goal: exploration also in time O(D) with polynomial number of agents
- Single *step* is as follows:

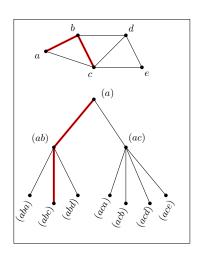


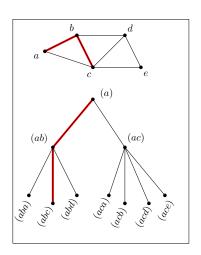
- The goal: exploration also in time O(D) with polynomial number of agents
- Single *step* is as follows:



- The goal: exploration also in time O(D) with polynomial number of agents
- Single *step* is as follows:




we simulate exploration of G by exploring a 'virtual' tree
T


- we simulate exploration of G by exploring a 'virtual' tree
 T
- one virtual move in T gives one step in G

- we simulate exploration of G by exploring a 'virtual' tree
 T
- one virtual move in T gives one step in G
- agent placed on P in T is present at the end vertex of P in G

- we simulate exploration of G by exploring a 'virtual' tree
 T
- one virtual move in T gives one step in G
- agent placed on P in T is present at the end vertex of P in G
- the size of T is exponential but it is enough to explore a polynomial-size subtree

Thank you!