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m we consider only unknown graphs

m exploration of unlabeled networks (just to note)
m exploration of labeled graphs

m piecemeal exploration of labeled graphs (more generally, energy
constrained)
m exploration time of labeled graphs
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Port labeled networks — typical considerations

m feasibility of the task (symmetry breaking)

m agents with little memory (e.g., exploration by finite
automaton)

E communication

impact of knowledge
m Note: size of advice for an arbitrary n-node graph is ©(nlog n)
for connected monotone edge search [Nisse & Soguet'07] (log n
bits of advice are provided to vertices having whiteboards)



Unknown labeled graphs

m vertices have unique identifiers

m agent is able to distinguish incident edges
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Exploring unknown labeled graphs

Theorem (Panaite & Pelc'99)

There exists an exploration algorithm with penalty' 3n for any
n-node graph. Note:

m DFS does not work (penalty Q(m))
m greedy approach does not work (penalty w(n))

the reference value is the number of edges
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Piecemeal exploration

m single agent

m the graph is labeled (nodes are distinguishable) and unknown
to the agent

m agent initially located at a homebase

m agent has a battery of limited size B: it needs to return to the
homebase to recharge after at most B edge traversals)

m minimize the number of trips (i.e., recharging events)

m (closely related model to tethered agents)
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Piecemeal exploration — offline version (complexity)

Simple reduction from 3-partition (Instance: S = {a1,...,a3m}.
Q.: is there a partition of S into m sets of the same sum W?)

ay nodes \f_/ as nodes

ao nodes

Set battery size B := 2W + 6.
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where r is the radius of the graph and o > 0 is some constant.

Theorem (Awerbuch & Kobourov'98)

There exists a O(m+ n Iog2 n)-time piecemeal exploration
algorithm with battery size (2 + «)r in any undirected graph,
where r is the radius of the graph and o > 2 is some constant.

Theorem (Duncan, Kobourov & Kumar'06)

There exists a O(m/«)-time piecemeal exploration algorithm with
battery size 2(1 + «)r in any undirected graph, where r is the
radius of the graph and o > 0 is some constant.
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Energy constrained exploration — the model

m as before: unknown labeled graphs

m multiple agents, each being able to perform at most B edge
traversals

m equivalent to piecemeal exploration when we insist that each
agents needs to return to the homebase; different without this
assumption

B we aim at a stronger algorithm that uses local communication

m approach that sometimes works: start with global
communication and then patch your solution
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Energy constrained exploration — optimization criteria

What we optimize? Two examples are:

m Example 1: keep the number of agents optimal but increase
the battery size (the battery size becomes (1 + «)B; try to
keep @ > 0 as small as possible) [our first example below; with
assumption that each agent returns to the homebase]

m Example 2: keep the battery size B but increase the number of

agents [our second example below; without returning to the homebase]
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Example 1 [Dynia, Korzeniowski & Schindelhauer'06]

(Piecemeal exploration, approximate by increasing the battery size)

Theorem (Dynia, Korzeniowski & Schindelhauer'06)

There exists a 8-competitive algorithm that explores any unknown
input tree by energy constrained agents using local communication.
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di=0 .. bh=B U<E<i

Subtrees rooted here are

do=c¢eby .../ W N independent.
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Example 2 (local communication) [Das, D. &

Karousatou'14|

Note: local communication means that an agent only knows its own
history and what it learned when meeting other agents.
Previous solution can be adopted for local communication:
m first modification (communication inside levels): instead of
one agent performing a DFS we introduce a team (of fixed
size) of agents

. We have information at the root
“.. about all that happend!
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Example 2 (local communication) [Das, D. &

Karousatou'14|

Previous solution can be adopted for local communication:
m second modification (communication between levels):

m at each node v of a given level there is a special agent

m the special agent is responsible for (1) reporting to its ancestor
from previous level that exploration of the subtree rooted at v
is completed, and

m (2) redirecting agents coming from the root to the currently
explored subtree

m agents use time to communicate as follows

m every few time steps (©(B) steps) a new agent ‘appears’ at
the root which is then redirected through consecutive levels
down the tree by the special agents.

Theorem (Das, D. & Karousatou'14)

There exists a O(log B)-competitive algorithm that explores any
unknown input tree by energy constrained agents using local
communication.
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A lower bound for energy constrained exploration

m we need log B agents to carry

information from v to the root
... and so on

m this information is the number of
leaves

w_ four edges
- ‘upwards’

m Claim: Q(log B) agents are

two edges necessary for some graphs.
© .. ‘upwards’

... one edge
;" ‘upwards’




Exploration time

m a team of k robots start at the root of a tree

m the goal is to explore the tree
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Unknown tree exploration — a short survey

m time O(D + n/ log k) using whiteboards at nodes [Fraigniaud
et al.’06]
m this gives competitive ratio of O(k/log k) w.r. offline optimal
O(D + n/k)
m intermediate algorithmic step via global communication
m time O(n/k + D*~1) using whiteboards at nodes [Brass &
Cabrera-Mora'11]

m improvement only for small diameter and k = O(log n)

m exploration in time O(D) with a polynomial number of agents
[D. et al."13]

= time D(1+ —1; + o(1)) using Dn° for any ¢ > 1; global
communication (Example 3)

= time D(1 4+ -2 + o(1)) using Dn® for any c > 1; local
communication (Example 4)

m time O(D log n) using k = (2 + £)nD agents and local
communication in general graph, for any € > 0
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m The goal: exploration in time O(D) with polynomial number
of agents
m Single step is as follows:

p > ‘Place’ z = O(n°) new agents
Ra at the root.
,‘".(explored part)
9 N ? 2
(unknown part) e
7
?
d N
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7 ....................... 2 ?




Example 3: Fast tree exploration (global communication)

m The goal: exploration in time O(D) with polynomial number
of agents
m Single step is as follows:

For each vertex v (including the root):

send down agents present at v
 to the children of v, partitioning
."',t.hcm proportionally to the
"'.,number of leaves

1n those children.
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m The goal: exploration also in time O(D) with polynomial
number of agents
m Single step is as follows:

. Agents have (exclusively) following states:

o “exploring”
e “notifying”

.. e “discarded”

- .(explored part)




Example 4: Fast tree exploration (local communication)

m The goal: exploration also in time O(D) with polynomial
number of agents
m Single step is as follows:

p > ‘Place’ z = O(n°) new agents
. with state “exploring”
at the root.
,‘".(explored part)
o * ? 2
unknown part) e
k p .
7 9
?
d ”
R '
o 7 ....................... ? ?




Example 4: Fast tree exploration (local communication)

m The goal: exploration also in time O(D) with polynomial
number of agents
m Single step is as follows:

For each vertex v:

-*-.. any “notifying” agents go to the parent
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m The goal: exploration also in time O(D) with polynomial
number of agents
m Single step is as follows:

... then, if there are at least two

g0 “exploring” agents and agents at v
. do not know of any agent that
.. visited v before, then:
.. make two “exploring” agents
."~,.to be “notifying”
H.«'(explored part) /X\
..... . ? 2




Example 4: Fast tree exploration (local communication)

m The goal: exploration also in time O(D) with polynomial

number of agents
m Single step is as follows:

(they will travel upwards keeping
distance one between
each other) .-

- .(explored part)

..'o

... then, if there are at least two
“exploring” agents and agents at v
do not know of any agent that
", visited v before, then:
.. make two “exploring” agents
to be “notifying”
v e

/N




Example 4: Fast tree exploration (local communication)

m The goal: exploration also in time O(D) with polynomial
number of agents
m Single step is as follows:

... then, if there is only one agent left

then just ‘discard’ it.




Example 4: Fast tree exploration (local communication)

m The goal: exploration also in time O(D) with polynomial
number of agents
m Single step is as follows:

... then, if there are more agents left
then partition them as before
and send to the children
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Fast graph exploration

m we simulate exploration of G b d
by exploring a ‘virtual’ tree a @
T . e

m one virtual move in T gives (a)
one step in G

m agent placed on P in T is (ab) (ac)
present at the end vertex of
Pin G

m the size of 7 is exponential

T D
but it is enough to explore a &;@ e § S s § \@
polynomial-size subtree ~ &




Thank you!



