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Port labeled networks — typical considerations

feasibility of the task (symmetry breaking)

agents with little memory (e.g., exploration by finite
automaton)

communication
impact of knowledge

Note: size of advice for an arbitrary n-node graph is Θ(n log n)
for connected monotone edge search [Nisse & Soguet’07] (log n
bits of advice are provided to vertices having whiteboards)
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Unknown labeled graphs

vertices have unique identifiers

agent is able to distinguish incident edges



Exploring unknown labeled graphs

Theorem (Panaite & Pelc’99)

There exists an exploration algorithm with penalty1 3n for any
n-node graph.

Note:

DFS does not work (penalty Ω(m))

greedy approach does not work (penalty ω(n))

1the reference value is the number of edges
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Piecemeal exploration

single agent

the graph is labeled (nodes are distinguishable) and unknown
to the agent

agent initially located at a homebase

agent has a battery of limited size B: it needs to return to the
homebase to recharge after at most B edge traversals)
minimize the number of trips (i.e., recharging events)

(closely related model to tethered agents)
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Q.: is there a partition of S into m sets of the same sum W ?)
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Piecemeal exploration — offline version (complexity)

Simple reduction from 3-partition (Instance: S = {a1, . . . , a3m}.
Q.: is there a partition of S into m sets of the same sum W ?)

. . .

a1 nodes

a2 nodes

a3 nodes

Set battery size B := 2W + 6.



Piecemeal exploration (short survey)

Theorem (Awerbuch et al.’99)

There exists a O(m + n1+o(1))-time piecemeal exploration
algorithm with battery size (2 + α)r in any undirected graph,
where r is the radius of the graph and α > 0 is some constant.

Theorem (Awerbuch & Kobourov’98)

There exists a O(m + n log2 n)-time piecemeal exploration
algorithm with battery size (2 + α)r in any undirected graph,
where r is the radius of the graph and α > 2 is some constant.

Theorem (Duncan, Kobourov & Kumar’06)

There exists a O(m/α)-time piecemeal exploration algorithm with
battery size 2(1 + α)r in any undirected graph, where r is the
radius of the graph and α > 0 is some constant.
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Energy constrained exploration — the model

as before: unknown labeled graphs

multiple agents, each being able to perform at most B edge
traversals

equivalent to piecemeal exploration when we insist that each
agents needs to return to the homebase; different without this
assumption

we aim at a stronger algorithm that uses local communication

approach that sometimes works: start with global
communication and then patch your solution
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Energy constrained exploration — optimization criteria

What we optimize? Two examples are:

Example 1: keep the number of agents optimal but increase
the battery size (the battery size becomes (1 + α)B; try to
keep α > 0 as small as possible) [our first example below; with

assumption that each agent returns to the homebase]

Example 2: keep the battery size B but increase the number of
agents [our second example below; without returning to the homebase]
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Example 1 [Dynia, Korzeniowski & Schindelhauer’06]

(Piecemeal exploration, approximate by increasing the battery size)

Theorem (Dynia, Korzeniowski & Schindelhauer’06)

There exists a 8-competitive algorithm that explores any unknown
input tree by energy constrained agents using local communication.



Example 2 (global communication) [Das, D. &
Karousatou’14]



Example 2 (global communication) [Das, D. &
Karousatou’14]

Take some 0 < ε < 1
4



Example 2 (global communication) [Das, D. &
Karousatou’14]

Take some 0 < ε < 1
4b1 = Bd1 = 0



Example 2 (global communication) [Das, D. &
Karousatou’14]

b1 = Bd1 = 0

( 12 + ε)b1

?
?

?

?

?

?

?
?

?
?

?

?

?

?

?
?

?

0 < ε < 1
4



Example 2 (global communication) [Das, D. &
Karousatou’14]

b1 = Bd1 = 0

( 12 + ε)b1

?
?

?

?

?

?

?
?

?
?

?

?

?

?

?
?

?

d2 = εb1

0 < ε < 1
4



Example 2 (global communication) [Das, D. &
Karousatou’14]

b1 = Bd1 = 0

( 12 + ε)b1

?
?

?

?

?

?

?
?

?
?

?

?

?

?

?
?

?

d2 = εb1

0 < ε < 1
4

Subtrees rooted here are

independent.



Example 2 (global communication) [Das, D. &
Karousatou’14]

b1 = Bd1 = 0

( 12 + ε)b1

?
?

?

?

?

?

?
?

?
?

?

?

?

?

?
?

?

d2 = εb1

0 < ε < 1
4

b2 = B − d2



Example 2 (global communication) [Das, D. &
Karousatou’14]

b1 = Bd1 = 0

( 12 + ε)b1

?
?

? ? ?
?

?

?

?

?

?

?
?

?

d2 = εb1

0 < ε < 1
4

b2 = B − d2

d2 + ( 12 + ε)b2



Example 2 (global communication) [Das, D. &
Karousatou’14]

b1 = Bd1 = 0

( 12 + ε)b1

?
?

? ? ?
?

?

?

?

?

?

?
?

?

d2 = εb1

0 < ε < 1
4

b2 = B − d2

d2 + ( 12 + ε)b2

d3 = d2 + εb2
b3 = B − d3



Example 2 (local communication) [Das, D. &
Karousatou’14]

Note: local communication means that an agent only knows its own
history and what it learned when meeting other agents.

Previous solution can be adopted for local communication:
first modification (communication inside levels): instead of
one agent performing a DFS we introduce a team (of fixed
size) of agents
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Note: local communication means that an agent only knows its own
history and what it learned when meeting other agents.
Previous solution can be adopted for local communication:

first modification (communication inside levels): instead of
one agent performing a DFS we introduce a team (of fixed
size) of agents

We have information at the root
about all that happend!



Example 2 (local communication) [Das, D. &
Karousatou’14]

Previous solution can be adopted for local communication:
second modification (communication between levels):

at each node v of a given level there is a special agent
the special agent is responsible for (1) reporting to its ancestor
from previous level that exploration of the subtree rooted at v
is completed, and
(2) redirecting agents coming from the root to the currently
explored subtree
agents use time to communicate as follows
every few time steps (Θ(B) steps) a new agent ‘appears’ at
the root which is then redirected through consecutive levels
down the tree by the special agents.

Theorem (Das, D. & Karousatou’14)

There exists a O(logB)-competitive algorithm that explores any
unknown input tree by energy constrained agents using local
communication.
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this information is the number of
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Claim: Ω(logB) agents are
necessary for some graphs.
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Exploration time

a team of k robots start at the root of a tree

the goal is to explore the tree



Unknown tree exploration — a short survey

time O(D + n/ log k) using whiteboards at nodes [Fraigniaud
et al.’06]

this gives competitive ratio of O(k/ log k) w.r. offline optimal
O(D + n/k)
intermediate algorithmic step via global communication

time O(n/k + Dk−1) using whiteboards at nodes [Brass &
Cabrera-Mora’11]

improvement only for small diameter and k = O(logD n)

exploration in time O(D) with a polynomial number of agents
[D. et al.’13]

time D(1 + 1
c−1 + o(1)) using Dnc for any c > 1; global

communication (Example 3)
time D(1 + 2

c−1 + o(1)) using Dnc for any c > 1; local
communication (Example 4)
time O(D log n) using k = (2 + ε)nD agents and local
communication in general graph, for any ε > 0
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Cabrera-Mora’11]

improvement only for small diameter and k = O(logD n)

exploration in time O(D) with a polynomial number of agents
[D. et al.’13]

time D(1 + 1
c−1 + o(1)) using Dnc for any c > 1; global

communication (Example 3)
time D(1 + 2

c−1 + o(1)) using Dnc for any c > 1; local
communication (Example 4)
time O(D log n) using k = (2 + ε)nD agents and local
communication in general graph, for any ε > 0



Example 3: Fast tree exploration (global communication)

The goal: exploration in time O(D) with polynomial number
of agents

Single step is as follows:
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The goal: exploration in time O(D) with polynomial number
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‘Place’ x = Θ(nc) new agents

at the root.



Example 3: Fast tree exploration (global communication)

The goal: exploration in time O(D) with polynomial number
of agents
Single step is as follows:

(explored part)

(unknown part)
?

?
?

?

?

?
?

?

?

?

?

?

?

??

For each vertex v (including the root):

send down agents present at v

to the children of v, partitioning

them proportionally to the

number of leaves

in those children.
v



Example 4: Fast tree exploration (local communication)

The goal: exploration also in time O(D) with polynomial
number of agents

Single step is as follows:
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The goal: exploration also in time O(D) with polynomial
number of agents

Single step is as follows:



Example 4: Fast tree exploration (local communication)

The goal: exploration also in time O(D) with polynomial
number of agents
Single step is as follows:

(explored part)

(unknown part)
?

?
?

?

?

?
?

?

?

?

?

?

?

??

Agents have (exclusively) following states:

• “exploring”

• “notifying”

• “discarded”



Example 4: Fast tree exploration (local communication)

The goal: exploration also in time O(D) with polynomial
number of agents
Single step is as follows:

(explored part)

(unknown part)
?

?
?

?

?

?
?

?

?

?

?

?

?

??

‘Place’ x = Θ(nc) new agents

with state “exploring”

at the root.



Example 4: Fast tree exploration (local communication)

The goal: exploration also in time O(D) with polynomial
number of agents
Single step is as follows:

(explored part)

(unknown part)
?

?
?

?

?

?
?

?

?

?

?

?

?

??

any “notifying” agents go to the parent

v

For each vertex v:



Example 4: Fast tree exploration (local communication)

The goal: exploration also in time O(D) with polynomial
number of agents
Single step is as follows:

(explored part)

(unknown part)
?

?
?

?

?

?
?

?

?

?

?

?

?

??

... then, if there are at least two

“exploring” agents and agents at v

v

do not know of any agent that

visited v before, then:
make two “exploring” agents

to be “notifying”



Example 4: Fast tree exploration (local communication)

The goal: exploration also in time O(D) with polynomial
number of agents
Single step is as follows:

(explored part)

(unknown part)
?

?
?

?

?

?
?

?

?

?

?

?

?

??

... then, if there are at least two

“exploring” agents and agents at v

v

do not know of any agent that

visited v before, then:
make two “exploring” agents

to be “notifying”

(they will travel upwards keeping

distance one between

each other)



Example 4: Fast tree exploration (local communication)

The goal: exploration also in time O(D) with polynomial
number of agents
Single step is as follows:

(explored part)

(unknown part)
?

?
?

?

?

?
?

?

?

?

?

?

?

??

... then, if there is only one agent left

then just ‘discard’ it.

v



Example 4: Fast tree exploration (local communication)

The goal: exploration also in time O(D) with polynomial
number of agents
Single step is as follows:

(explored part)

(unknown part)
?

?
?

?

?

?
?

?

?

?

?

?

?

??

... then, if there are more agents left

then partition them as before

and send to the children

v



Fast graph exploration

we simulate exploration of G
by exploring a ‘virtual’ tree
T
one virtual move in T gives
one step in G

agent placed on P in T is
present at the end vertex of
P in G

the size of T is exponential
but it is enough to explore a
polynomial-size subtree
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Fast graph exploration

we simulate exploration of G
by exploring a ‘virtual’ tree
T
one virtual move in T gives
one step in G

agent placed on P in T is
present at the end vertex of
P in G

the size of T is exponential
but it is enough to explore a
polynomial-size subtree

a

b

c

d

e

(a)

(ab) (ac)

(a
ba
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(a
bc
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(a
bd
)

(a
ca
)

(a
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cd
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(a
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Thank you!


