Selfish Cops and Adversarial Robber: Multi-Player Pursuit Evasion on Graphs

Ath. Kehagias and G. Konstantinidis

Selfish Cops and Adversarial Robber: Multi-Player Pursuit Evasion on Graphs

Ath. Kehagias and G. Konstantinidis

April 3, 2017
Many variations of the “classic” Cops and Robber (CR) game have been proposed.
Many variations of the “classic” Cops and Robber (CR) game have been proposed.

Also generalized CR games (e.g., Bonato and MacGillivray).
Many variations of the “classic” Cops and Robber (CR) game have been proposed.

Also generalized CR games (e.g., Bonato and MacGillivray).

But all of these (as far as I know) are two-player games.
Many variations of the “classic” Cops and Robber (CR) game have been proposed.

Also generalized CR games (e.g., Bonato and MacGillivray).

But all of these (as far as I know) are two-player games.

Today I will present a game played between one robber and two cops, with each one being an independent, selfish player.
Many variations of the "classic" Cops and Robber (CR) game have been proposed.

Also generalized CR games (e.g., Bonato and MacGillivray).

But all of these (as far as I know) are two-player games.

Today I will present a game played between one robber and two cops, with each one being an independent, *selfish* player.

So we will be looking at a *three*-player game.
Many variations of the “classic” Cops and Robber (CR) game have been proposed.

Also generalized CR games (e.g., Bonato and MacGillivray).

But all of these (as far as I know) are two-player games.

Today I will present a game played between one robber and two cops, with each one being an independent, selfish player.

So we will be looking at a three-player game.

The generalization to N-player game is immediate.
The name of the game is **SCAR** (*Selfish Cops and Adversarial Robber*).
The name of the game is **SCAR** (*Selfish Cops and Adversarial Robber*). The main result is the following.
A Cops and Robbers Generalization

The name of the game is SCAR (Selfish Cops and Adversarial Robber). The main result is the following.

Theorem

For every graph G and every initial position, SCAR has a Nash Equilibrium.
The name of the game is SCAR (Selfish Cops and Adversarial Robber). The main result is the following.

Theorem

For every graph G and every intial position, SCAR has a Nash Equilibrium.

The rules are as follows.
A Cops and Robbers Generalization

The name of the game is SCAR (Selfish Cops and Adversarial Robber). The main result is the following.

Theorem

For every graph G and every initial position, SCAR has a Nash Equilibrium.

The rules are as follows.
- Three players (C_1, C_2, R) move tokens along the edges of a graph.
The name of the game is **SCAR** (*Selfish Cops and Adversarial Robber*). The main result is the following.

Theorem

For every graph G and every initial position, SCAR has a Nash Equilibrium.

The rules are as follows.

- Three players (C_1, C_2, R) move tokens along the edges of a graph.
- Start from given initial position.
A Cops and Robbers Generalization

The name of the game is **SCAR** (*Selfish Cops and Adversarial Robber*). The main result is the following.

Theorem

For every graph G and every initial position, SCAR has a Nash Equilibrium.

The rules are as follows.

- Three players (C_1, C_2, R) move tokens along the edges of a graph.
- Start from given initial position.
- Players alternate: C_1, C_2, R, C_1, \ldots.

The name of the game is **SCAR** (*Selfish Cops and Adversarial Robber*). The main result is the following.

Theorem

> For every graph G and every initial position, SCAR has a Nash Equilibrium.

The rules are as follows.

- Three players (C_1, C_2, R) move tokens along the edges of a graph.
- Start from given initial position.
- Players alternate: C_1, C_2, R, C_1,
- C_i wins if at the end of a turn he is on same vertex as R.
The name of the game is **SCAR** (*Selfish Cops and Adversarial Robber*). The main result is the following.

Theorem

For every graph G and every initial position, SCAR has a Nash Equilibrium.

The rules are as follows.

- Three players (C_1, C_2, R) move tokens along the edges of a graph.
- Start from given initial position.
- Players alternate: C_1, C_2, R, C_1,
- C_i wins if at the end of a turn he is on same vertex as R.
- R wins if he is never at same vertex as either C_1 or C_2.
The name of the game is **SCAR (Selfish Cops and Adversarial Robber)**. The main result is the following.

Theorem

For every graph G and every initial position, SCAR has a Nash Equilibrium.

The rules are as follows.

- Three players (C_1, C_2, R) move tokens along the edges of a graph.
- Start from given initial position.
- Players alternate: C_1, C_2, R, C_1,
- C_i wins if at the end of a turn he is on same vertex as R.
- R wins if he is never at same vertex as either C_1 or C_2.
Some Notation

- **Player set** \(I = \{1, 2, 3\} \).
Some Notation

- **Player set** \(I = \{1, 2, 3\} \).
- **State** \(s = (x^1, x^2, x^3, i) \).
Some Notation

- **Player set** \(I = \{1, 2, 3\} \).
- **State** \(s = (x^1, x^2, x^3, i) \).
- **Actions** \(a^1, a^2, a^3 \).
Some Notation

- **Player set** $I = \{1, 2, 3\}$.
- **State** $s = (x^1, x^2, x^3, i)$.
- **Actions** a^1, a^2, a^3.
- **Capture time** $T_C = \min \{ t : x^1_t = x^3_t \text{ or } x^2_t = x^3_t \}$.

State $s = (x^1, x^2, x^3, i)$.
Some Notation

- **Player set** $I = \{1, 2, 3\}$.
- **State** $s = (x^1, x^2, x^3, i)$.
- **Actions** a^1, a^2, a^3.
- **Capture time** $T_C = \min \{ t : x_t^1 = x_t^3 \text{ or } x_t^2 = x_t^3 \}$.
- **Histories** $h = s_0s_1...s_t$, $h = s_0s_1...s_t...$.
Some Notation

- **Player set** \(I = \{1, 2, 3\} \).
- **State** \(s = (x^1_t, x^2_t, x^3_t, i) \).
- **Actions** \(a^1, a^2, a^3 \).
- **Capture time** \(T_C = \min \{ t : x^1_t = x^3_t \text{ or } x^2_t = x^3_t \} \).
- **Histories** \(h = s_0 s_1 ... s_t, \quad h = s_0 s_1 ... s_t ... \).
- **Strategies** \(\sigma^i(s_0 s_1 ... s_t) = a^i_t \).
Some Notation

- **Player set** $I = \{1, 2, 3\}$.
- **State** $s = (x^1, x^2, x^3, i)$.
- **Actions** a^1, a^2, a^3.
- **Capture time** $T_C = \min \{ t : x^1_t = x^3_t \text{ or } x^2_t = x^3_t \}$.
- **Histories** $h = s_0s_1...s_t$, $h = s_0s_1...s_t...$.
- **Strategies** $\sigma^i(s_0s_1...s_t) = a^i_t$.
- **Stationary (or positional) strategies** $\sigma^i(s_0s_1...s_t) = \sigma^i(s_t) = a^i_t$.

A Cops and Robbers Generalization

Some Notation

Payoff

The Main Theorem

An Auxiliary Lemma

The Main Theorem Proof

N-player SCAR

Conjectures etc.

Concurrent Cops and Robbers
Some Notation

- **Player set** $I = \{1, 2, 3\}$.
- **State** $s = (x^1, x^2, x^3, i)$.
- **Actions** a^1, a^2, a^3.
- **Capture time** $T_C = \min \{ t : x^1_t = x^3_t \text{ or } x^2_t = x^3_t \}$.
- **Histories** $h = s_0s_1...s_t$, $h = s_0s_1...s_{t...}$.
- **Strategies** $\sigma^i(s_0s_1...s_t) = a^i_t$.
- **Stationary (or positional) strategies**
 $\sigma^i(s_0s_1...s_t) = \sigma^i(s_t) = a^i_t$.
- **Strategy profile** $\sigma = (\sigma_1, \sigma_2, \sigma_3)$. Also
 $\sigma^{-1} = (\sigma_2, \sigma_3)$, $\sigma^{-2} = ...$
Some Notation

- **Player set** \(I = \{1, 2, 3\} \).
- **State** \(s = (x_1^t, x_2^t, x_3^t, i) \).
- **Actions** \(a^1, a^2, a^3 \).
- **Capture time** \(T_C = \min \{ t : x_1^t = x_3^t \text{ or } x_2^t = x_3^t \} \).
- **Histories** \(h = s_0s_1...s_t, \ h = s_0s_1...s_t..., \ .\)
- **Strategies** \(\sigma^i(s_0s_1...s_t) = a_t^i \).
- **Stationary (or positional) strategies**
 \(\sigma^i(s_0s_1...s_t) = \sigma^i(s_t) = a_t^i \).
- **Strategy profile** \(\sigma = (\sigma_1, \sigma_2, \sigma_3) \). Also \(\sigma^{-1} = (\sigma_2, \sigma_3), \ \sigma^{-2} = ... \)
Payoff

- Total payoff is sum of turn payoffs.

\[Q_s^i(\pi) = Q^i(s) = \sum_{t=0}^{\infty} q^i(s_t). \]
Payoff

- Total payoff is sum of turn payoffs.

\[Q^i_s(\pi) = Q^i(s) = \sum_{t=0}^{\infty} q^i(s_t). \]

- Turn payoff is

\[q^3(s) = \begin{cases}
1 & \text{if } s \text{ not a capture state} \\
0 & \text{otherwise.}
\end{cases} \]
Payoff

- Total payoff is sum of turn payoffs.

\[Q^i_s(\pi) = Q^i(s) = \sum_{t=0}^{\infty} q^i(s_t). \]

- Turn payoff is

\[q^3(s) = \begin{cases}
 1 & \text{if } s \text{ not a capture state} \\
 0 & \text{otherwise.}
\end{cases} \]

\[i = 1, 2 : q^i(s) = \begin{cases}
 -1 & \text{if } s \text{ not capture state} \\
 -B & \text{if } s \text{ not capture-by-}i \text{ state} \\
 0 & \text{else.}
\end{cases} \]
Payoff

- Total payoff is sum of turn payoffs.

\[Q_s^i(\pi) = Q^i(s) = \sum_{t=0}^{\infty} q^i(s_t). \]

- Turn payoff is

\[q^3(s) = \begin{cases}
1 & \text{if } s \text{ not a capture state} \\
0 & \text{otherwise.}
\end{cases} \]

\[i = 1, 2 : q^i(s) = \begin{cases}
-1 & \text{if } s \text{ not capture state} \\
-B & \text{if } s \text{ not capture-by-}i \text{ state} \\
0 & \text{else.}
\end{cases} \]

- \(B \) is the noncapture penalty.
So actually SCAR is a \textit{quantitative} game.
So actually SCAR is a *quantitative* game.

Can (?) be converted to qualitative (i.e., win/lose) game by letting $B \to \infty$.
So actually SCAR is a *quantitative* game.

- Can (?) be converted to qualitative (i.e., win/lose) game by letting $B \to \infty$.

- Each cop has motive to capture the robber; capture by the other cop is a partial loss.
So actually SCAR is a *quantitative* game.

Can (?) be converted to qualitative (i.e., win/lose) game by letting $B \to \infty$.

Each cop has motive to capture the robber; capture by the other cop is a partial loss.

Clearly it is a *non-zero-sum* game.
So actually SCAR is a *quantitative* game.

Can (?) be converted to qualitative (i.e., win/lose) game by letting $B \to \infty$.

Each cop has motive to capture the robber; capture by the other cop is a partial loss.

Clearly it is a *non-zero-sum* game.

So the appropriate solution concept is *Nash Equilibrium* (NE).
The Main Theorem

In three-player SCAR, for any starting state s we have

$$\forall i \in I, \forall \sigma^i : Q_s^i(\pi^1, \pi^2, \pi^3) \geq Q_s^i(\sigma^i, \pi^{-i}).$$

(1)

In other words, $\pi = (\pi^1, \pi^2, \pi^3)$ is a Nash equilibrium for three-player SCAR with any starting state s.
Theorem

\[\Gamma_s(i) \text{ is the two-player zero-sum game with initial state } s, \text{ played by player } i \text{ (with payoff } Q^i) \text{ against the coalition of players } I \setminus \{i\} \text{ (with payoff } -Q^i). \]
An Auxiliary Lemma

- $\Gamma_s(i)$ is the *two-player zero-sum* game with initial state s, played by player i (with payoff Q^i) against the *coalition* of players $I \setminus \{i\}$ (with payoff $-Q^i$).
- $\Gamma_s(i)$ is a two-player, zero-sum *positive stochastic* game.
An Auxiliary Lemma

- \(\Gamma_s(i) \) is the *two-player zero-sum* game with initial state \(s \), played by player \(i \) (with payoff \(Q_i \)) against the *coalition* of players \(I \setminus \{i\} \) (with payoff \(-Q_i\)).
- \(\Gamma_s(i) \) is a two-player, zero-sum *positive* stochastic game.

Lemma

For each \(s \) and \(i \), the game \(\Gamma_s(i) \) has a value and the players have deterministic and stationary optimal strategies.
The value and optimal strategies can be computed by a value-iteration algorithm which reduces to a Hahn-like algorithm.
The value and optimal strategies can be computed by a value-iteration algorithm which reduces to a Hahn-like algorithm.

Denote by ϕ^i the optimal (maxmin) strategy of player i in $\Gamma_s(i)$ and by $\phi^i_{\neg i}$ the joint (optimal) strategy of the coalition $I/\{i\}$ against i.
The Main Theorem Proof: the Central Idea

The threat strategy of player i is denoted by π^i and defined as follows:
The threat strategy of player i is denoted by π^i and defined as follows:

1. as long as every player $j \neq i$ follows ϕ^j, player i follows ϕ^i;
The threat strategy of player i is denoted by π^i and defined as follows:

1. as long as every player $j \neq i$ follows ϕ^j, player i follows ϕ^i;

2. as soon as some player $j \neq i$ deviates from ϕ^j, player i switches to ϕ^j and uses it for the rest of the game.
The Main Theorem Proof: the Central Idea

The threat strategy of player i is denoted by π^i and defined as follows:

1. as long as every player $j \neq i$ follows ϕ^j, player i follows ϕ^i;

2. as soon as some player $j \neq i$ deviates from ϕ^j, player i switches to ϕ^j and uses it for the rest of the game.

Note that:
The Main Theorem Proof: the Central Idea

The threat strategy of player i is denoted by π_i and defined as follows:

1. as long as every player $j \neq i$ follows ϕ_j^i, player i follows ϕ_i^i;

2. as soon as some player $j \neq i$ deviates from ϕ_j^i, player i switches to ϕ_j^i and uses it for the rest of the game.

Note that:

- If player j deviates then the players in $I \setminus \{j\}$ play the coalition strategy optimal against j in $\Gamma_s(j)$.
The Main Theorem Proof: the Central Idea

The threat strategy of player i is denoted by π^i and defined as follows:

1. as long as every player $j \neq i$ follows ϕ^j, player i follows ϕ^i;

2. as soon as some player $j \neq i$ deviates from ϕ^j, player i switches to ϕ^i and uses it for the rest of the game.

Note that:

- If player j deviates then the players in $I\setminus\{j\}$ play the *coalition strategy* optimal against j in $\Gamma_s (j)$.
- The deviation will be detected immediately, since the game has perfect information.
Remarks

1. \(\pi = (\pi^1, \pi^2, \pi^3) \) is a NE iff (for every \(i \)) player \(i \) has no incentive to \textit{unilaterally} deviate from strategy \(\pi^i \).
Remarks

1. \(\pi = (\pi^1, \pi^2, \pi^3) \) is a NE iff (for every \(i \)) player \(i \) has no incentive to *unilaterally* deviate from strategy \(\pi^i \).
2. This does not imply global optimality.
Remarks

1. $\pi = (\pi^1, \pi^2, \pi^3)$ is a NE iff (for every i) player i has no incentive to unilaterally deviate from strategy π^i.

2. This does not imply global optimality. (Player i may be able to achieve a payoff higher than $Q^i(\pi)$ if more than one players deviate from the strategy profile π).
Remarks

1. $\pi = (\pi^1, \pi^2, \pi^3)$ is a NE iff (for every i) player i has no incentive to unilaterally deviate from strategy π^i.

2. This does not imply global optimality. (Player i may be able to achieve a payoff higher than $Q^i(\pi)$ if more than one players deviate from the strategy profile π).

3. A SCAR game may possess additional Nash equilibria, different from the one indicated in the Theorem.
Remarks

1. $\pi = (\pi^1, \pi^2, \pi^3)$ is a NE iff (for every i) player i has no incentive to *unilaterally* deviate from strategy π^i.

2. This does not imply global optimality. (Player i may be able to achieve a payoff higher than $Q^i(\pi)$ if more than one players deviate from the strategy profile π).

3. A SCAR game may possess additional Nash equilibria, different from the one indicated in the Theorem.

4. Some of these may provide better payoff for one or more players.
Remarks

1. \(\pi = (\pi^1, \pi^2, \pi^3) \) is a NE iff (for every \(i \)) player \(i \) has no incentive to unilaterally deviate from strategy \(\pi^i \).
2. This does not imply global optimality. (Player \(i \) may be able to achieve a payoff higher than \(Q^i(\pi) \) if more than one players deviate from the strategy profile \(\pi \)).
3. A SCAR game may possess additional Nash equilibria, different from the one indicated in the Theorem.
4. Some of these may provide better payoff for one or more players.
5. The strategies \((\pi^1, \pi^2, \pi^3) \) are not stationary.
The auxiliary two-player zero-sum games are $\Gamma_s(1), \ldots, \Gamma_s(N)$.
N-player SCAR

- The auxiliary two-player zero-sum games are $\Gamma_s(1)$, ..., $\Gamma_s(N)$.
- $\Gamma_s(i)$ is the two-player game (with initial state s) in which player i (with payoff Q^i) plays against the coalition $I \setminus \{i\}$ (with payoff $-Q^i$).
The auxiliary two-player zero-sum games are $\Gamma_s(1), ..., \Gamma_s(N)$.

$\Gamma_s(i)$ is the two-player game (with initial state s) in which player i (with payoff Q^i) plays against the coalition $I \setminus \{i\}$ (with payoff $-Q^i$).

For each state s and player i, the game $\Gamma_s(i)$ has a value.
N-player SCAR

- The auxiliary two-player zero-sum games are $\Gamma_s(1)$, ..., $\Gamma_s(N)$.
- $\Gamma_s(i)$ is the two-player game (with initial state s) in which player i (with payoff Q^i) plays against the coalition $I \setminus \{i\}$ (with payoff $-Q^i$).
- For each state s and player i, the game $\Gamma_s(i)$ has a value and the players have deterministic and stationary optimal strategies.
The auxiliary two-player zero-sum games are $\Gamma_s(1)$, ..., $\Gamma_s(N)$.

$\Gamma_s(i)$ is the two-player game (with initial state s) in which player i (with payoff Q^i) plays against the coalition $I \setminus \{i\}$ (with payoff $-Q^i$).

For each state s and player i, the game $\Gamma_s(i)$ has a value and the players have deterministic and stationary optimal strategies.

The meanings of ϕ^i and ϕ^{-i} are as previous.
The auxiliary two-player zero-sum games are $\Gamma_s(1)$, ..., $\Gamma_s(N)$.

$\Gamma_s(i)$ is the two-player game (with initial state s) in which player i (with payoff Q^i) plays against the coalition $I \setminus \{i\}$ (with payoff $-Q^i$).

For each state s and player i, the game $\Gamma_s(i)$ has a value and the players have deterministic and stationary optimal strategies.

The meanings of ϕ^i and ϕ^{-i} are as previous.

The threat strategy of player i in the N-player game is π^i.
The auxiliary two-player zero-sum games are $\Gamma_s(1), \ldots, \Gamma_s(N)$.

$\Gamma_s(i)$ is the two-player game (with initial state s) in which player i (with payoff Q^i) plays against the coalition $I \setminus \{i\}$ (with payoff $-Q^i$).

For each state s and player i, the game $\Gamma_s(i)$ has a value and the players have deterministic and stationary optimal strategies.

The meanings of ϕ^i and ϕ^{-i} are as previous.

The threat strategy of player i in the N-player game is π^i:

1. as long as every player $j \neq i$ follows ϕ^j, player i follows ϕ^i;
The auxiliary two-player zero-sum games are $\Gamma_s(1), \ldots, \Gamma_s(N)$.

$\Gamma_s(i)$ is the two-player game (with initial state s) in which player i (with payoff Q^i) plays against the coalition $I \setminus \{i\}$ (with payoff $-Q^i$).

For each state s and player i, the game $\Gamma_s(i)$ has a value and the players have deterministic and stationary optimal strategies.

The meanings of ϕ^i_i and ϕ^{-i}_i are as previous.

The threat strategy of player i in the N-player game is π^i:

1. as long as every player $j \neq i$ follows ϕ^j_j, player i follows ϕ^i_i;
2. as soon as some player $j \neq i$ deviates from ϕ^j_j, player i switches to ϕ^i_j and uses it for the rest of the game.
Theorem

In N-player SCAR, for any starting state s we have

$$\forall i \in I, \forall \sigma^i : Q^i_s(\pi) \geq Q^i_s(\sigma^i, \pi^{-i}).$$

(2)

In other words, $\pi = (\pi^1, \pi^2, ..., \pi^N)$ is a Nash equilibrium for N-player SCAR with any starting state s.
Theorem

In N-player SCAR, for any starting state s we have

$$\forall i \in I, \forall \sigma^i : Q^i_s(\pi) \geq Q^i_s(\sigma^i, \pi^{-i}).$$

(2)

In other words, $\pi = (\pi^1, \pi^2, ..., \pi^N)$ is a Nash equilibrium for N-player SCAR with any starting state s.

Remark

These results can be extended to N-player generalized CR games.
1. **Conjecture** The NE of our Theorem is not subgame-perfect.

2. If $c(G) = 1$ then every NE results in capture.

3. If either 2 or 3 is false, characterize the graphs for which it is true.

4. What changes in the case of the win/lose game?

5. What changes in the case of the concurrent game?
Conjectures etc.

1. **Conjecture** The NE of our Theorem is not subgame-perfect.

2. **Conjecture** If $c(G) = 1$ then the NE of our Theorem results in capture.
Conjectures etc.

1. **Conjecture** The NE of our Theorem is not subgame-perfect.

2. **Conjecture** If $c(G) = 1$ then the NE of our Theorem results in capture.

3. **Conjecture** If $c(G) = 1$ then every NE results in capture.

4. Problem If either 2 or 3 is false, characterize the graphs for which it is true.

5. Question What changes in the case of the win/lose game?

6. Question What changes in the case of the concurrent game?
Conjectures etc.

1. **Conjecture** The NE of our Theorem is not subgame-perfect.
2. **Conjecture** If $c(G) = 1$ then the NE of our Theorem results in capture.
3. **Conjecture** If $c(G) = 1$ then every NE results in capture.
4. **Problem** If either 2 or 3 is false, characterize the graphs for which it is true.
Conjectures etc.

1. **Conjecture** The NE of our Theorem is not subgame-perfect.

2. **Conjecture** If $c(G) = 1$ then the NE of our Theorem results in capture.

3. **Conjecture** If $c(G) = 1$ then every NE results in capture.

4. **Problem** If either 2 or 3 is false, characterize the graphs for which it is true.

5. **Question** What changes in the case of the win/lose game?
Conjectures etc.

1. **Conjecture** The NE of our Theorem is not subgame-perfect.

2. **Conjecture** If $c(G) = 1$ then the NE of our Theorem results in capture.

3. **Conjecture** If $c(G) = 1$ then every NE results in capture.

4. **Problem** If either 2 or 3 is false, characterize the graphs for which it is true.

5. **Question** What changes in the case of the win/lose game?

6. **Question** What changes in the case of the *concurrent* game?
In a \textit{concurrent CR game}, all players move simultaneously.
Concurrent Cops and Robbers

- In a *concurrent CR game*, all players move simultaneously.
- All the usual variants are possible:
Concurrent Cops and Robbers

- In a *concurrent CR game*, all players move simultaneously.
- All the usual variants are possible:
 - Two or N players.
Concurrent Cops and Robbers

- In a *concurrent CR game*, all players move simultaneously.
- All the usual variants are possible:
 - Two or N players.
 - Qualitative or quantitative game.
Concurrent Cops and Robbers

- In a *concurrent CR game*, all players move simultaneously.
- All the usual variants are possible:
 - Two or N players.
 - Qualitative or quantitative game.
 - Generalized CR games (ala Bonato+MacGillivray).
Concurrent Cops and Robbers

- In a *concurrent CR game*, all players move simultaneously.
- All the usual variants are possible:
 - Two or N players.
 - Qualitative or quantitative game.
 - Generalized CR games (ala Bonato+MacGillivray).
 - Etc.
Concurrent Cops and Robbers

- In a *concurrent CR game*, all players move simultaneously.
- All the usual variants are possible:
 - Two or N players.
 - Qualitative or quantitative game.
 - Generalized CR games (ala Bonato+MacGillivray).
 - Etc.
- For the two-player, zero-sum quantitative game of unselfish cops see Kehagias+Konstantinidis, TCS, vol.645, pp.48-59.
It is *not* a game of perfect information.
It is \textit{not} a game of perfect information.

It is \textit{not} a zero-sum game.
It is not a game of perfect information.

It is not a zero-sum game.

So probably it is harder to establish existence of NE.
It is not a game of perfect information.

It is not a zero-sum game.

So probably it is harder to establish existence of NE.

We have results for a simplified case: selfish cops and passive robber.
The game is played between two cops; each tries to capture the robber first.
The game is played between two cops; each tries to capture the robber first.

The robber is passive: his moves are given by a fixed function, known in advance to the cops.
The game is played between two cops; each tries to capture the robber first.

The robber is passive: his moves are given by a fixed function, known in advance to the cops.

We only examine graphs with $c(G) = 1$.
The game is played between two cops; each tries to capture the robber first.

The robber is passive: his moves are given by a fixed function, known in advance to the cops.

We only examine graphs with $c(G) = 1$.

We have both sequential and concurrent versions.
Selfish Cops and Passive Robber

- The game is played between two cops; each tries to capture the robber first.
- The robber is passive: his moves are given by a fixed function, known in advance to the cops.
- We only examine graphs with \(c(G) = 1 \).
- We have both sequential and concurrent versions.
- Payoff:
The game is played between two cops; each tries to capture the robber first.

The robber is passive: his moves are given by a fixed function, known in advance to the cops.

We only examine graphs with $c(G) = 1$.

We have both sequential and concurrent versions.

Payoff:

- C_1 wants to maximize probability of capturing the robber.
The game is played between two cops; each tries to capture the robber first.

The robber is passive: his moves are given by a fixed function, known in advance to the cops.

We only examine graphs with \(c(G) = 1 \).

We have both sequential and concurrent versions.

Payoff:

- \(C_1 \) wants to maximize probability of capturing the robber.
- \(C_2 \) wants to maximize probability of the robber not being captured by \(C_1 \).
The game is played between two cops; each tries to capture the robber first.

The robber is passive: his moves are given by a fixed function, known in advance to the cops.

We only examine graphs with $c(G) = 1$.

We have both sequential and concurrent versions.

Payoff:

- C_1 wants to maximize probability of capturing the robber.
- C_2 wants to maximize probability of the robber not being captured by C_1.

For the sequential case, and with deterministic robber, the payoff takes values in $\{0, 1\}$.
Results for concurrent variant.
Results for concurrent variant.

- The game has value, optimal strategy for C_1, ϵ-optimal strategy for C_2.
Selfish Cops and Passive Robber

- Results for concurrent variant.
 - The game has value, optimal strategy for C_1, ϵ-optimal strategy for C_2.
 - Values and strategies can be computed by value iteration.
Results for concurrent variant.
- The game has value, optimal strategy for C_1, ϵ-optimal strategy for C_2.
- Values and strategies can be computed by value iteration.

Results for sequential variant.
Results for concurrent variant.
- The game has value, optimal strategy for C_1, ϵ-optimal strategy for C_2.
- Values and strategies can be computed by value iteration.

Results for sequential variant.
- The game has value, optimal strategy for C_1, ϵ-optimal strategy for C_2.

These results can be extended to generalized CR games.
Selfish Cops and Passive Robber

- Results for concurrent variant.
 - The game has value, optimal strategy for C_1, ϵ-optimal strategy for C_2.
 - Values and strategies can be computed by value iteration.

- Results for sequential variant.
 - The game has value, optimal strategy for C_1, ϵ-optimal strategy for C_2.
 - When the robber is deterministic C_2 also has optimal strategy.
RESULTS FOR CONCURRENT VARIANT.
- The game has value, optimal strategy for C_1, ϵ-optimal strategy for C_2.
- Values and strategies can be computed by value iteration.

RESULTS FOR SEQUENTIAL VARIANT.
- The game has value, optimal strategy for C_1, ϵ-optimal strategy for C_2.
- When the robber is deterministic C_2 also has optimal strategy.
- Values and strategies can be computed by value iteration.
Selfish Cops and Passive Robber

- Results for concurrent variant.
 - The game has value, optimal strategy for C_1,
 ϵ-optimal strategy for C_2.
 - Values and strategies can be computed by value iteration.

- Results for sequential variant.
 - The game has value, optimal strategy for C_1,
 ϵ-optimal strategy for C_2.
 - When the robber is deterministic C_2 also has optimal strategy.
 - Values and strategies can be computed by value iteration.

- These results can be extended to generalized CR games.
Selfish Cops and Passive Robber

- Results for concurrent variant.
 - The game has value, optimal strategy for C_1, ϵ-optimal strategy for C_2.
 - Values and strategies can be computed by value iteration.

- Results for sequential variant.
 - The game has value, optimal strategy for C_1, ϵ-optimal strategy for C_2.
 - When the robber is deterministic C_2 also has optimal strategy.
 - Values and strategies can be computed by value iteration.

- These results can be extended to generalized CR games.